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Abstract: The SARS-CoV-2 outbreak is characterized by the need of the search for curative drugs
for treatment. In this paper, we present an update of knowledge about the interest of the functional
inhibitors of acid sphingomyelinase (FIASMAs) in SARS-CoV-2 infection. Forty-nine FIASMAs
have been suggested in the treatment of SARS-CoV-2 infection using in silico, in vitro or in vivo
studies. Further studies using large-sized, randomized and double-blinded controlled clinical trials
are needed to evaluate FIASMAs in SARS-CoV-2 infection as off-label therapy.

Keywords: functional inhibitors of acid sphingomyelinase (FIASMAs); acid sphingomyelinase;
COVID-19; SARS-CoV-2; mortality

1. Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is identified
as the disease-causing pathogen of Coronavirus disease 2019 (COVID-19). Up to June
2021, the number of confirmed cases worldwide exceeded 179 million, with more than
3.9 million deaths. Some encouraging results have been observed using dexamethasone
and remdesivir in the treatment of COVID-19 in patients requiring supplemental oxygen,
mechanical ventilation or extracorporeal membrane oxygenation, but there is still no drug
preventing host cell infection or cytokine release syndrome.

SARS-CoV-2 is a family of enveloped viruses that enter into host cells by receptor
binding and membrane fusion [1], and acid sphingomyelinase (ASM) and ceramide play a
prominent role in receptor signaling and infection cycle [1]. There are two forms of ASM:
(i) lysosomal ASM that is transported to the endosomal compartment and anchored to the
inner lysosomal membrane, and (ii) secretory ASM that is transported to the outer leaflet
of the plasma membrane.

Some organic molecules, including currently marketed drugs, have the potential
to functionally inhibit the activity of ASM from reversible and additive manner. These
molecules identified by the acronym FIASMAs (i.e., functional inhibitors of acid sphin-
gomyelinase) have the potential to inhibit this enzyme, notably the lysosomal ASM, and
therefore disrupt the entry of viruses into cells [2]. In cell culture models, inhibition of acid
sphingomyelinase activity by amitriptyline has been shown to prevent the infection of cells
with SARS-CoV-2 and pseudoviral SARS-CoV-2 in an ex vivo model [3]. Hence, the impact
of chronic exposure of patients to a drug or a group of drugs with FIASMA properties on
the clinical course of patients infected with SARS-CoV-2 may be questioned.

At least sixty-four drugs classified as FIASMAs reduce ASM activity by at least 50% at
10 µM concentration. The distribution of FIASMAs with respect to their ATC code revealed
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that specific therapeutic groups were over-represented: C08 (calcium channel blockers;
amlodipine), D04 (antipruritics; promethazin), N04 (anti-Parkinson’s; benztropine), R06
(antihistamines for systemic use; astemizole), N06 (psychoanaleptics; fluvoxamine) and
N05 (psycholeptics; chlorpromazine).

Repurposing of drugs in COVID-19 is being investigated using in silico, in vitro or ex
vivo activity-based studies, as well on in vivo activity-based drug repurposing in animal
models and human studies (epidemiological, clinical studies, case reports).

Recently (9 January 2021), we reviewed [4] all the corresponding studies (N = 27), in-
cluding the pre-print publications, and found that thirty-two FIASMAs could be considered
as potential drugs for treating SARS-CoV-2.

The aim of the present overview is firstly to present a brief history of the interest
of FIASMAs in SARS-CoV-2 infection, and secondly, to provide an updated overview of
studies on FIASMAs in this infection.

2. Brief History of the Studies of FIASMAs in the SARS-CoV-2 Infection

In 2005, a study reported the role of increased ASM activity in organ failure of patients
with severe sepsis [5].

In 2010, compounds including marketed drugs with a potential to inhibit ASM activity
in vitro were called “Functional inhibitors of ASM” (FIASMAs). These compounds are
cationic amphiphilic molecules with a relative heterogeneity in terms of chemical structure.
They typically are polycyclic molecules, with at least 1 basic nitrogen atom (pKa > 4, which
corresponds to a partially protonated functional group at acidic pH) and show moderate to
high lipophilicity (logp > 3) [2].

In 2014, two different in vitro studies reported that several FIASMAs were active
against both MERS-CoV and SARS-CoV [6,7]. In these two studies, inhibition of ASM
was not mentioned, and other active mechanisms were suggested as inhibitors of clathrin-
mediated endocytosis for chlorpromazine.

In 2019, Andrews [8] suggested that “It is becoming increasingly clear that many
pathogens that produce membrane damaging also trigger a repair mechanism involving
exocytosis of lysosomal ASM, generating ceramide-enriched cell surface domains that
facilitate cell invasion”.

Independently of the ASM pathway, viruses usually take advantage of the endocytosis
mechanisms to penetrate the cytosol of cells, and different mechanisms of internalization are
involved. These are clathrin-mediated endocytosis, macropinocytosis, caveolar/lipid raft-
mediated endocytosis, as well as several less well-characterized clathrin- and caveolin/lipid
raft-independent mechanisms [9].

Markus Blaess in a pre-print (May 5, 2020) [10] strongly suggested that lysosomotropic
compounds could protect against COVID-19 infection in a concealed way, and cited a
set of 34 clinically approved lysosomotropic compounds, 30 of them being FIASMAs.
The author suggested that these compounds could be used off label using either local
(inhalative) or systematic administration. Later, the author [11] developed the repurposing
of lysosomotropic drugs (including numerous FIASMAs) in COVID-19 infection.

In 2020, among the 23 in silico, in vitro or ex vivo studies reporting activity of FI-
ASMAs against SARS-CoV-2 [4], only two cited the inhibition of ASM as the principal
mechanism of action of the drugs [3,12].

In 2021, Chung and Claus [13] reviewed the function of ASM to explore the question
whether ASM is a friend or foe in the course of sepsis and severe infection (not limited to
COVID-19 infection). The interest of FIASMAs repurposing and particularly amitriptyline
were underlined by the authors.

In 2021, a study [14] used SARS-CoV-2 pseudoviruses to infect human angiotensin-
converting enzyme 2 (ACE2)-expressing HEK293T cells and evaluated virus infection.
SARS-CoV-2 entry was dependent on ACE2 and sensitive to pH endosome/lysosome in
HEK293T cells. Moreover, the infection of SARS-CoV-2 pseudoviruses was independent
of dynamin, clathrin, caveolin, endophilin as well as micropinocytosis. Cholesterol-rich
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lipids rafts and endosomal acidification are key steps of SARS-CoV-2 required for infection
of host cells.

3. Update (16 June 2021) on Studies with FIASMAs in the SARS-CoV-2 Infection

To review the extensive evidence about FIASMAs as a therapeutic modality for COVID-
19, authors attempted to answer the following key questions. First, would FIASMAs
provide benefits in relation to COVID-19? Second, should FIASMAs be used as early
intervention in COVID-19 disease?

We manually searched two electronic databases, PubMed and Google Scholar, for
English-language titles and abstracts using the terms “Alverine OR . . . OR . . . Trim-
ipramine” (64 drugs, see [2]) and “COVID-19 OR SARS-CoV-2”

Among the 231 articles (PubMed and Google Scholar), 91 were retained [3,12,15–103].
Twenty-seven have been reviewed in our previous article [4] (23 in silico, in vitro or in vivo
studies, 5 human studies (one common with in vitro studies)) and 64 were new studies
highlighting the interest of the scientific community for FIASMAs. Among these new
studies, there were 52 in silico, in vitro or in vivo studies, and 14 were human studies (2 of
them also reporting in silico or in vitro studies)

Forty-nine FIASMAs have been suggested as potential treatment in SARS-CoV-2 infec-
tion and nine of them (benztropine, chlorpromazine, clomipramine, emetine, fluphenazine,
loperamide, promethazine, tamoxifene and triflupromazine) were active on the three
coronaviruses (SARS, SARS-MERS, SARS-CoV-2) (see Table 1).

Table 1. Functional inhibitors of acid sphingomyelinase (FIASMAs) with activity against SARS-CoV-2 on in silico, or/and
in vitro models or/and in vivo models (N = 49).

FIASMAs In Silico (References) In Vitro (References) In Vivo (References)

Ambroxol v [100]

Amiodarone ��� [15,19,26] ��� [12,17,18] vv† [20,103]

Amitriptyline ������ [19,21–25] � [3] v†v† [54,103]

Amlodipine ����� [19,23,24,26,89] ��� [27–29] vvvv†v [29–32,103]

Astemizole � [93]

Benztropine �� [42,45]

Bepridil �� [19,22] � [33]

Carvedilol ��� [19,25,34] vv [25,53]

Cepharanthine �� [35,39] ������ [36–38,40,41,94]

Chlorpromazine ���� [19,26,35,43] ����� [42–45,55] vvv† [45,46,73]

Chlorprothixene � [19] � [18]

Clemastine ���� [19,35,47,48] �� [17,18]

Clofazimine �� [19,91] ������ [28,41,49–51,95] v [51]

Clomiphene �� [52,96]

Clomipramine � [19] ���� [42,45,55,97] v† [54]

Cloperastine �� [35,47]

Cyclobenzaprine � [19]

Cyproheptadine � [19]

Desipramine � [19] �� [3,55]

Desloratadine �� [19,48] � [56]

Dicycloverine � [95]

Dilazep � [57]

Doxepine � [58]
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Table 1. Cont.

FIASMAs In Silico (References) In Vitro (References) In Vivo (References)

Emetine ������ [35,59,65–67,90] ������ [60–64,98]

Flunarizine � [19] � [18]

Fluoxetine ����� [19,57,69–71] ������ [3,12,18,55,68,72] vv† [54,103]

Fluphenazine �� [19,74] �� [42,45]

Flupenthixol � [70] �� [17,55]

Fluvoxamine � [55] vv [75,76]

Hydroxyzine � [48] � [77] vvv†v† [77,78,101,103]

Imipramine �� [19,22] ��� [3,12,55]

Loperamide �� [18,36] v† [103]

Loratadine � [19] � [56] vv [77,88]

Maprotiline � [19] �� [3,18]

Melatonine ������ [25,26,34,79–81] vvvv [25,53,82,102]

Nortriptyline � [57]

Paroxetine � [34] � [43] vvv† [53,54,103]

Perphenazine � [19]

Pimozide �� [33,55]

Promazine � [19]

Promethazine ��� [19,48,92] � [45]

Protriptyline � [19]

Quinacrine ���� [34,48,71,83] ���� [84–86,99]

Sertraline �� [13,28] v† [54]

Tamoxifene �� [48,92] �� [45,96]

Thioridazine �� [71,87] � [28]

Trifluoperazine �� [19,70] � [28]

Triflupromazine � [19]

Trimipramine �� [19,22] � [37]

In bold: 9 drugs active against the 3 coronaviruses; in silico (�), in vitro (�), in vivo (v) and negative result (†).

Fifteen FIASMAs [20,25,29–32,46,53,54,73,75–78,82,88,101–103] have been studied us-
ing epidemiological-clinical studies or case reports (amiodarone, amitriptyline, amlodipine,
carvedilol, chlorpromazine, clomipramine, desloratadine, fluoxetine, fluvoxamine, hy-
droxyzine, loperamide, loratadine, melatonine, paroxetine, and sertraline). Among the
15 FIASMAs, only amlodipine [32] and fluvoxamine [75] were studied using randomized
double-blind clinical studies (see Table 2).

Among the 19 human studies, there were two case reports on amiodarone [20] or
loratadine [88], four retrospective studies that have explored the association between one
FIASMAs (carvedilol [25,53], hydroxyzine [77,101], loratadine [77], melatonine [25,53],
paroxetine [53]) and the negativity or positivity on a PCR test, four prospective studies
on fluvoxamine [75,76], melatonine [102] or amlodipine [32] including two randomized
clinical trial [32,75], 4 retrospective studies on mortality in hospitalized COVID-19 patients
on amlodipine [29–31] or melatonine [82], one observational study on low rate of COVID-
19 infection in psychiatric patients treated by antipsychotics comparatively to nurses or
physicians [73], 4 retrospective studies on mortality or intubation on hospitalized COVID-
19 patients on amiodarone, amitriptyline, amlodipine, chlorpromazine, clomipramine,
desloratadine, fluoxetine, hydroxyzine, paroxetine and sertraline [46,54,78,103].
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Table 2. Functional inhibitors of acid sphingomyelinase (FIASMAs) (N = 15) with activity against SARS-CoV-2 in epidemio-
logical, clinical studies, or case reports.

FIASMA
(Reference) Study Design Sample Size FIASMA Prevalence Outcome

Amiodarone [20] * Case report 1 100%

Case report of a 74-year-old man
affected by respiratory failure related to
COVID-19 who recovered after only
supportive measures and amiodarone
lasted 5 days.

[103] * Retrospective 2602 1.27%

Mortality or intubation on hospitalized
COVID-19 patients (N = 33 on
amiodarone, N = 2569 without
FIASMAs) HR = 1.26 (p = 0.14).

Amitriptyline [54] * Retrospective 6924 0.56%

Mortality or intubation on hospitalized
COVID-19 patients (N = 39 on
amitriptyline, N = 6885 without
antidepressants) HR = 0.85 (p = 0.59).

[103] * Retrospective 2589 0.77%

Mortality or intubation on hospitalized
COVID-19 patients (N = 20 on
amitriptyline, N = 2569 without
FIASMAs) HR = 0.54 (p = 0.12).

Amlodipine [29] Retrospective 96 19.8%

Mortality on COVID-19 inpatients with
hypertension as the only comorbidity.
Patients on amlodipine (N = 19) or
non-amlodipine (N = 77) had lower
mortality (0% vs. 19.5%, p = 0.037).

[30] Retrospective 65 36.9% ?

Mortality on elderly patients
hospitalized for COVID-19; 24 were on
amlodipine or nifedipine and 41 were
not, 50% survived in the amlodipine or
nifedipine group and 14.6% in the other
group (p = 0.0036).

[31] Retrospective 317 18.9%

Mortality on hospitalized COVID-19
patients; 60 were on amlodipine and 257
were not. Multiple logistic regression
found lower mortality on patients on
amlodipine (OR = 0.24, p = 0.0031).

[32] * Prospective
randomized 80 48.7%

Mortality. Losartan (N = 41) and
amlodipine (N = 39) on patients with
COVID-19 and primary hypertension.
No significant difference of 30-day
mortality rate.

[103] * Retrospective 2666 3.64%

Mortality or intubation on hospitalized
COVID-19 patients (N = 97 on
amlodipine, N = 2569 without
FIASMAs) HR = 0.7 (p = 0.037).

Carvedilol [25] Retrospective 26,779 2.93%

PCR-positive. Patients tested for
COVID-19 in Cleveland Clinic Health
System; Carvedilol use (N = 785) was
significantly associated with reduced
likelihood of PCR positive to
SARS-CoV-2 (OR = 0.74; p < 0.05).
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Table 2. Cont.

FIASMA
(Reference) Study Design Sample Size FIASMA Prevalence Outcome

[53] Retrospective 11,672 2.96%

PCR-negative. Patients tested for
COVID-19 in Cleveland Clinic Health
System. Among 346 subjects on
Carvedilol, 333 (96.2%) were
PCR-negative and 13 (3.8%) were
PCR-positive (p = 0.022).

Chlorpromazine [73] Observational

Prevalence of COVID-19. Low rate (4%)
of symptomatic COVID-19 infection in
patients treated by antipsychotics than
the rate (14%) observed in nurses or
physicians in the same departments
of psychiatry.

[46] * Retrospective 14,340 0.38%

Mortality or intubation on hospitalized
COVID-19 patients (N = 55 on
chlorpromazine, N = 14,285 without
chlorpromazine); 23.6% deaths on
chlorpromazine and 9% deaths on
subjects without chlorpromazine
HR = 2.01 (p = 0.16).

Clomipramine [54] * Retrospective 6894 0.13%

Mortality or intubation on hospitalized
COVID-19 patients (N = 9 on
clomipramine, N = 6885 without
antidepressants) HR = 0.44 (p = 0.4).

Desloratadine [103] * Retrospective 2576 0.27%

Mortality or intubation on hospitalized
COVID-19 patients (N = 7 on
desloratadine, N = 2569 without
FIASMAs) HR = 0.68 (p = 0.44).

Fluoxetine [54] * Retrospective 6915 0.43%

Mortality or intubation on hospitalized
COVID-19 patients (N = 30 on
fluoxetine, N = 6885 without
antidepressants) HR = 0.37 (p = 0.049).

[103] * Retrospective 2583 0.54%

Mortality or intubation on 2583
hospitalized COVID-19 patients (N = 14
on fluoxetine, N = 2569 without
FIASMAs) HR = 0.3 (p = 0.082).

Fluvoxamine [75] Double-blind
randomized 152 52.6%

Clinical deterioration within 15 days.
Fluvoxamine (N = 80) vs. placebo
(N = 72) on non-hospitalized adults.
Less clinical deterioration within 15
days of randomization in fluvoxamine
group (0/80) than in placebo group (6
/72) (log-rank p = 0.009).

[76] Prospective 113 57.5%
Incidence of hospitalization was 0% (0
of 65) with fluvoxamine and 12.5% (6 of
48) without fluvoxamine (p = 0.005).

Hydroxyzine [77] Retrospective 219,000 0.12%

Incidence PCR-positive. Prior usage of
hydroxyzine (N = 269) was associated
with reduced incidence of positive
SARS-CoV-2 in individuals 61 years
and above.
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Table 2. Cont.

FIASMA
(Reference) Study Design Sample Size FIASMA Prevalence Outcome

[78] * Retrospective 7345 1.88%

Mortality or intubation on hospitalized
COVID-19 patients (N = 138) on
hydroxyzine), (N = 7207) without
hydroxyzine; HR = 0.42 (p = 0.001).

[101] Retrospective 230,376 1.7%

Incidence PCR-negative. Prior usage of
hydroxyzine (N = 3909) was not
associated with increased incidence of
negative SARS-CoV-2 in individuals.
Adjusted OR = 0.76 (p > 0.05).

[103] * Retrospective 2600 1.19%

Mortality or intubation on hospitalized
COVID-19 patients (N = 31 on
hydroxyzine, N = 2569 without
FIASMAs) HR = 0.43 (p = 0.04).

Loperamide [103] * Retrospective 2578 0.35%

Mortality or intubation on hospitalized
COVID-19 patients (N = 9 on
loperamide, N = 2569 without
FIASMAs) HR = 0.25 (p = 0.1).

Loratadine [77] Retrospective 219,000 0.13%

Incidence PCR-positive. Prior usage of
loratadine (N = 284) was associated with
reduced incidence of positive SARS-CoV-2
in individuals 61 years and above.

[88] Case report 1 100%

Case report (54-year-old female) of
pityriasis rosea gibert associated with
COVID-19 infection hospitalized and
treated with 200 mg/day
hydrocortisone hemisuccinate and
loratadine 20 mg/day. Two weeks after
admission, the patient was discharged
with a negative RT-PCR and without
respiratory symptoms.

Melatonine [25] Retrospective 26,779 3.94%

Incidence PCR-positive. Patients tested
for COVID-19 in Cleveland Clinic
Health System. Melatonine use
(n = 1055) was significantly associated
with reduced likelihood of PCR-positive
to SARS-CoV-2 (OR = 0.72; p < 0.05).

[53] Retrospective 11,672 4.53%

Incidence PCR-positive. Patients tested
for COVID-19 in Cleveland Clinic
Health System. Among 529 subjects on
melatonin, 513 (97%) were
PCR-negative and 16 (3%) were
PCR-positive (p = 0.001).

[82] Retrospective 791

Survival rate. Patients with COVID-19
infection. Melatonin exposure was
associated with survival in
COVID-19 patients.

[102]
Prospective
longitudinal
(before-after)

110 20%

Survival scores. Five groups of
22 patients were receiving pentoxifylline
and one group had also 5 mg of
melatonine every 12 h for 5 days. The
medications improved the survival
scores, and several inflammation
markers (CRP . . . ) were diminished at
the end of the treatment
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Table 2. Cont.

FIASMA
(Reference) Study Design Sample Size FIASMA Prevalence Outcome

Paroxetine [53] Retrospective 11,672

Incidence PCR-positive. Patients tested
for COVID-19 in Cleveland Clinic
Health System (7% PCR+). Among
subjects on paroxetine, there was
significant higher PCR-.

[54] * Retrospective 6948 0.91%

Mortality or intubation in hospitalized
COVID-19 patients (N = 63 on
paroxetine, N = 6885 without
antidepressants) HR = 0.52 (p = 0.0006).

[103] * Retrospective 2610 1.57%

Mortality or intubation on 2610
hospitalized COVID-19 patients (N = 41
on paroxetine, N = 2569 without
FIASMAs) HR = 0.66 (p = 0.13).

Sertraline [54] * Retrospective 6907 0.32%

Mortality or intubation in hospitalized
COVID-19 patients (N = 22 on sertraline
N = 6885 without antidepressants)
HR = 0.68 (p = 0.13).

[103] * Retrospective 2590 0.81%

Mortality or intubation on 2590
hospitalized COVID-19 patients (N = 21
on sertraline, N = 2569 without
FIASMAs) HR = 0.57 (p = 0.11).

* Studies exploring acute and not chronic intake of FIASMAs asking the question of non-obtaining the steady state allowing a maximal
ASM inhibition; HR: hazard ratio; OR: odds ratio.

Several methodological aspects of the abovementioned studies deserve to be dis-
cussed. First, the choice of the primary end point can be questioned in some studies,
especially those based on clinical deterioration (e.g., percentage of admission in ICU, time
to intubation, or percentage of intubation . . . ) or those using a composite criterion as
opposed to those based only on mortality rate. Indeed, the former studies can display
significant variability as a function of time (bed occupancy rate, number of other cases
requiring intubation, pandemia severity . . . ) and also according to hospitals, thus poten-
tially leading to problems of reproducibility in the criteria in multicenter retrospective
studies [46,54,78,103]. Hence, studies based on a mortality criterion should be considered
more relevant. The second point to be considered is the choice of the FIASMAs and the
duration of their prescription within the study. Indeed, this latter parameter influences
the accumulation in pulmonary tissue, and more specifically in lysosomes, to achieve the
desired inhibition of acid sphingomyelinase [11]. The highest accumulation in plasma and
also into the lysosome compartments (i.e., called steady-state) requires around 7 times
the apparent elimination half-life of the drug to occur. This can lead to a quite long delay
depending on the drug (e.g., from 7 to 14 days for fluoxetine), especially for an infection
where deterioration and mortality arise quite rapidly in patients with severe symptoms.
Besides the time to reach the highest accumulation depending on the elimination half-life,
the magnitude of the tissue distribution has to be considered. As lipophilic and amine
drugs, most FIASMAs have a very high volume of distribution [4], so that they have the
potential to distribute freely in some body organs. More precisely, some of these drugs
have been called “pneumophilic drugs” as a result of their ability to distribute in the lungs
(e.g., amiodarone, verapamil, tricyclic antidepressants like imipramine and amitriptyline,
and phenothiazines like chlorpromazine, β-blockers like propranolol, and local anesthetics
like lidocaine). The mechanism of this lung accumulation currently remains unclear but
carrier-mediated pathways have been suggested. Even though their volume of distribution
may be quite large, these drugs are also very highly bound to plasma proteins (>95%)
so that drug-free levels in the body should be quite low. Hence, in order to estimate the
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potential effect of a drug on the course of COVID-19 infection in patients from retrospective
studies, it would be necessary to make sure that the patients included in the study have
previously been exposed to the drug(s) being studied at the time of inclusion, ideally by
a chronic prescription. Given these pharmacokinetic features, in our previous paper [4]
we have underlined that reaching a steady state to obtain a maximal effect would require
a delay (seven times the half-life), and alternatively that a loading dose may be used to
rapidly reach the steady state [11].

The direct administration through the pulmonary tract may help in reaching pul-
monary targets, and should be an option to consider since COVID is a respiratory disease
(11). Ambroxol, a lipophilic cationic molecule, not formally categorized as FIASMA, is
approved as a mucolytic drug, and can be used by inhalation. In a recent ex vivo study,
it has been shown that ambroxol reduced ASM activity in human nasal epithelial cells
infected with pp-SARS-CoV-2 spike [100].

When examining the results of retrospective studies in COVID-19 hospitalized patients,
it is important to keep in mind that the mean length of hospital stay is 13 days with around
an 8-day delay from symptom onset to admission, and 3-day delay from admission to ICU
(ISARIC clinical data report 4 October 2020 on 102,959 individuals from 566 sites across
42 countries).

In other terms, if the study baseline was defined as the date of hospital admission, and
notably within the first 48 h, then the steady state is unlikely to be obtained for most drugs
within the natural course of the disease except for the FIASMAs having a short half-life
(melatonine: 7 half-lives: 6–7 h, alverine: 7 half-lives: 6 h, cloperastine: 7 half-lives: 24 h).

Among the different retrospective studies on COVID-19 hospitalized patients, two
studies have included patients without mentioning the duration of the prescription of
the drugs [29,30], one study explored the interest of melatonine [82], only one study has
included patients with FIASMAs taken for at least 7 half-lives [31], and four studies have
taken into account only FIASMAs prescribed after the hospitalization. More precisely, for
these four studies, the beginning of the prescription was: the date of the first prescrip-
tion (during hospitalization) of chlorpromazine [46] or hydroxyzine [78],—within the first
48 h of hospital admission for receiving any antidepressants [54],—within the first 24 h
of hospital admission for receiving at least one FIASMAs [103]. However, among the
clinical studies, negative results were reported for amlodipine, amiodarone, amitriptyline,
clomipramine, chlorpromazine, desloratadine, fluoxetine, hydroxyzine, paroxetine, sertra-
line [32,46,54,103] (see Table 2). These negative results could be explained first by the acute
drug prescription, second by underpowered studies (an insufficient power of the statistical
tests) explained by low samples size, and third by selection biases.

Regarding the two case reports, those [20] reporting the use of amiodarone during 5
days, although the half-life of the drug is around 50 days, calls into question the FIASMA
activity of the drug.

Regarding the prospective studies, and notably the randomized clinical studies us-
ing either fluvoxamine or amlodipine, the protocol required the drug intake after the
randomization to patients having a positive RT-PCR.

For the randomized double-blind clinical study exploring the potential effect of fluvox-
amine against placebo [75], the main criterion was clinical deterioration within 15 days so
that the half-life of the drug (17–22 h, steady-state: 5–6 days) allowed to test for ASM activity.

For the randomized double-blind clinical study [32] exploring the potential effect of
amlodipine against losartan, the authors had two principal criteria: 30-day mortality and
length of hospital stay. They reported no significant difference on the two criteria, but in
their study, a stratified randomization of age has not been done, and the mean age of the
groups were different: 67.3 years and 60.1 years for losartan and amlodipine, respectively.
The half-lives of amlodipine (30 to 60 h) and losartan and its carboxylic active metabolite
(about 2 h and 6–9 h, respectively) were also different. The difference in age and in half-life
of the drugs studied appeared to be serious limitations of the study for a fair comparison
between the drugs.
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Unfortunately, there is, as yet, no published study using randomized double-blind
clinical study exploring one FIASMA against placebo with mortality as principal criterion.

4. Conclusions

The present review highlights the particular interest of the repurposing of FIAS-
MAs for the inhibition of SARS-CoV-2 entry, and potential limitations of some published
retrospective or prospective studies.

Future studies should pay better attention to the pharmacokinetic properties of the
drugs investigated to allow the control of potential confounding factors found in retro-
spective studies; and to optimize the design of prospective controlled clinical trials (e.g.,
relevance of a loading dose for drugs with prolonged elimination half-lives). The present
review highlights the particular interest of the repurposing of FIASMAs for the inhibition
of SARS-CoV-2 entry. Very recent review highlights the interest of inhibition of ASM in
SARS-CoV-2 infection, and suggests that serum level of shingosine-1-phosphate (S1P), one
of the shingolipids, could be a prognostic factor for COVID-19 severity [104].

However, a recent research article has highlighted that phospholipidosis was a shared
mechanism underlying the SARS-CoV-2 antiviral activity of many repurposed drugs
without mentioning ASM inhibition [105].

Besides the pharmacokinetic properties, the choice of a FIASMA should consider the
target population. Studies implemented in subjects just after a positive RT-PCR test should
consider FIASMA with a low rate of undesirable adverse effects. Thus, antipsychotics
(e.g., chlorpromazine) should not be considered and could be contraindicated. Studies
implemented in subjects with a recent infection requiring hospitalization should ideally
consider FIASMA combining other mechanisms of action to reduce excessive inflammatory
response during sepsis or to attenuate neurological complications. For example, amitripty-
line exerts neuroprotection via tropomyosin receptor kinase [106], and fluvoxamine via the
Sigma-1 receptor activity may modulate SARS-CoV-2 induced cytokine storm [107].
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